Structure, development, and plasticity of dendritic spines.
نویسنده
چکیده
Dendritic spines are distinguished by their shapes, subcellular composition, and synaptic receptor subtypes. Recent studies show that actin-dependent movements take place in spine heads, that spines emerge from stubby and shaft synapses after dendritic filopodia disappear, and that spines can form without synaptic activation, are maintained by optimal activation, and are lost with excessive activation or during degeneration.
منابع مشابه
Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines.
There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of ...
متن کاملControl of Dendritic Spine Morphological and Functional Plasticity by Small GTPases.
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, special...
متن کاملPhosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity
Dendritic spines are small postsynaptic compartments of excitatory synapses in the vertebrate brain that are modified during learning, aging, and neurological disorders. The formation and modification of dendritic spines depend on rapid assembly and dynamic remodeling of the actin cytoskeleton in this highly compartmentalized space, but the precise mechanisms remain to be fully elucidated. In t...
متن کاملOlfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo
Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines' response to different olfactory experiences in vivo is not fully known. In initial studies, a single granul...
متن کاملDendritic spines: from structure to in vivo function.
Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in neurobiology
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1999